Brain copper protects against cognitive decline and Alzheimer’s disease pathology: a community-based study

  • Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, etc. Cu(II)-induced dramatic aggregation of Alzheimer’s abeta is induced by conditions that represent physiological acidosis. J Biochem. 1998;273:12817-26.

    CAS PubMed Google Scholar

  • Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, etc. Characterization of copper interactions with amyloid beta peptides in Alzheimer’s disease: identification of attomolar affinity copper binding sites on amyloid beta 1-42. J Neurochem. 2000;75:1219-33.

    CAS PubMed Google Scholar

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J. Synchrotron-based infrared and X-ray imaging reveals Cu and Zn colocalization with beta-amyloid deposits in Alzheimer’s disease concentrated accumulation. J Structural Biology. 2006;155:30-7.

    CAS PubMed Google Scholar

  • Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper imbalance in Alzheimer’s disease and its connection to the amyloid hypothesis: Towards a combination of clinical, chemical, and genetic etiology. J Alzheimer’s Disease: JAD. 2021;83:23-41.

    CAS PubMed Google Scholar

  • Li DD, Zhang W, Wang ZY, Zhao P. Serum copper, zinc, and iron levels in patients with Alzheimer’s disease: a meta-analysis of case-control studies. Frontiers in Aging Neuroscience. 2017;9:300.

    CAS PubMed PubMed Central Google Scholar

  • Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y, et al. Mutant copper transporters reduce amyloid-beta in vivo. Proc Natl Acad Sci. 2003;100:14193–8.

    CAS PubMed PubMed Central Google Scholar

  • Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse model for preclinical studies of Alzheimer’s disease. Embo J. 2017;36:2473–87.

    CAS PubMed PubMed Central Google Scholar

  • Itoh S, Ozumi K, Kim HW, Nakagawa O, McKinney RD, Folz RJ, et al. A novel mechanism of copper regulation of extracellular SOD transcription and activity: the role of antioxidant 1. Free radical biomedicine. 2009;46:95–104.

    CAS PubMed Google Scholar

  • Sensi SL, Granzotto A, Siotto M, Squitti R. Copper and zinc dysregulation in Alzheimer’s disease. Trend Pharmacy. 2018;39:1049-63.

    CAS PubMed Google Scholar

  • Wagoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative diseases. Neurobiology Dis. 1999;6:221-30.

    CAS PubMed Google Scholar

  • Morris MC, Evans DA, Tangney CC, Bienias JL, Schneider JA, Wilson RS et al. Dietary copper and high saturated and trans fat intakes are associated with cognitive decline. arch nerve. 2006;63:1085–8.

    PubMed Google Scholar

  • Wang X, Li X, Xing Y, Wang W, Li S, Zhang D, et al. Threshold effect of total copper intake on cognitive function in older American adults and moderating effects of fat and saturated fatty acid intake. J Acad Nutrition Diet. 2021;121:2429–42.

    PubMed Google Scholar

  • Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Order Research and Emergency Memory and Aging Project. J Alzheimer’s Disease: JAD. 2018;64:S161-S189.

    PubMed Google Scholar

  • Morris MC. Validity and reproducibility of the cognitive food frequency questionnaire in a sample of elderly mixed-race children. I am the journal of epidemiology. 2003;158:1213-7.

    PubMed Google Scholar

  • Wilson RS, Boyle PA, Yu L, Barnes LL, Sytsma J, Buchman AS, et al. The time course and pathological basis of memory loss in dementia is unknown. Neurology 2015;85:984-91.

    PubMed PubMed Central Google Scholar

  • Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, et al. Neuropathology in older adults without cognitive impairment from two community studies. Neurology. 2006;66:1837-44.

    CAS PubMed Google Scholar

  • Boyle PA, Yu L, Leurgans SE, Wilson RS, Brookmeyer R, Schneider JA, et al. Attributable risk of Alzheimer’s disease dementia due to age-related neuropathology. Peace of mind. 2019;85:114-24.

    CAS PubMed Google Scholar

  • Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE. Neurofibrillary tangles mediate the association of amyloid burden with levels of clinical Alzheimer’s disease and cognitive function. arch nerve. 2004;61:378–84.

    PubMed Google Scholar

  • Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. Creation of the Consortium of Registries for Alzheimer’s Disease (CERAD). the second part. Standardization of neuropathological assessments in Alzheimer’s disease. Neurology 1991;41:479-86.

    CAS PubMed Google Scholar

  • Braak H, Braak E. Neuropathological staging of Alzheimer’s disease-related changes. Acta Neuropathology. 1991;82:239-59.

    CAS PubMed Google Scholar

  • Consensus recommendations for postmortem diagnosis of Alzheimer’s disease. National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for Neuropathological Assessment of Alzheimer’s Disease. Neurobiological Aging. 1997;18:S1-2.

    Google Scholar

  • Yu L, Lutz MW, Wilson RS, Burns DK, Roses AD, Saunders AM, etc. TOMM40’523 variant and cognitive decline in older adults with APOE epsilon3/3 genotypes. Neurology 2017;88:661-8.

    CAS PubMed PubMed Central Google Scholar

  • Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah RC, Kelly JF, et al. Decision rules guiding clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared with standard practice in clinically-based cohort studies. Neuroepidemiology 2006;27:169–76.

    PubMed Google Scholar

  • Wilson RS, Barnes LL, Krueger KR, Hoganson G, Bienias JL, Bennett DA. Cognitive activity and geriatric cognitive systems in early and late life. J Int Neuropsychol Soc. 2005;11:400–7.

    PubMed Google Scholar

  • Buchman AS, Boyle PA, Wilson RS, Bienias JL, Bennett DA. Physical activity and exercise capacity decline in older adults. muscle nerves. 2007;35:354–62.

    CAS PubMed Google Scholar

  • Agarwal P, Wang Y, Buchman AS, Holland TM, Bennett DA, Morris MC. Dietary antioxidants are associated with slower progression of Parkinson’s symptoms in older adults. Nutritional Neuroscience. 2020;25:550–557. https://doi.org/10.1080/1028415X.2020.1769411.

    Article Google Scholar

  • Willett toilet Effects of total energy intake on epidemiological analysis, roll. Third Edition 2013, pp. 260-286.

  • Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, Kirsch WMIron. Copper and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neuroscience Wright. 2007;418:72-6.

    CAS PubMed PubMed Central Google Scholar

  • Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, et al. The reduced copper in the Alzheimer’s disease brain is mainly in the soluble extractable fraction. Int J Alzheimer’s Dis. 2013;2013:623241–623241.

    PubMed PubMed Central Google Scholar

  • Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insights on the impact of citation bias on scientific opinion. Prog Neurobiology. 2011;94:296–306.

    CAS PubMed PubMed Central Google Scholar

  • Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC. Zinc and copper differentially regulate amyloid precursor protein processing through gamma-secretase and amyloid-beta peptide production. J Biochem. 2017;292:3751–67.

    CAS PubMed PubMed Central Google Scholar

  • Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, etc. Copper facilitates the transport of amyloid precursor protein. J Biochem. 2011;286:8252–62.

    CAS PubMed Google Scholar

  • Cater MA, McInnes KT, Li QX, Volitakis I, La Fontaine S, Mercer JF, etc. Intracellular copper deficiency increases beta-amyloid secretion through multiple mechanisms. Biochem J. 2008;412:141-52.

    CAS PubMed Google Scholar

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer’s disease transgenic mice using 8-hydroxyquinoline analogs is associated with reduced interstitial Abeta. Neuron 2008;59:43-55.

    CAS PubMed Google Scholar

  • Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, et al. Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One. 2011;6:e17669.

    CAS PubMed PubMed Central Google Scholar

  • Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepest R, etc. Dietary copper stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci. 2003;100:14187–92.

    CAS PubMed PubMed Central Google Scholar

  • Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, et al. Safety, efficacy, and biomarker discovery of PBT2-targeted Abeta as a modification therapy for Alzheimer’s disease: a phase IIa, double-blind, randomized, placebo-controlled trial. Lancet neurons. 2008;7:779–86.

    CAS PubMed Google Scholar

  • Diouf I, Bush AI, Ayton S. Cerebrospinal fluid ceruloplasmin levels predict cognitive decline and brain atrophy in people with underlying beta-amyloid pathology. Neurobiology Dis. 2020;139:104810.

    CAS PubMed PubMed Central Google Scholar

  • Giacoppo S, Galuppo M, Calabrò RS, D’Aleo G, Marra A, Sessa E, etc. Heavy metals and neurodegenerative diseases: an observational study. Biol Trace Elem Res. 2014;161:151-60.

    CAS PubMed Google Scholar

  • Kessler H, Pajonk FG, Bach D, Schneider-Axmann T, Falkai P, Herrmann W et al. Effects of copper intake on cerebrospinal fluid parameters in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transmission (Vienna). 2008;115:1651-9.

    Chinese Academy of Sciences Google Scholar

  • Yaffe K, Clemons TE, McBee WL, Lindblad AS. Effects of antioxidants, zinc, and copper on cognition in older adults: a randomized controlled trial. Neurology 2004;63:1705-7.

    CAS PubMed Google Scholar

  • Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, et al. Chronic copper exposure causes hippocampal oxidative stress and impaired learning and memory in male and female rats. Poison Reservoir. 2020;36:359–66.

    CAS PubMed PubMed Central Google Scholar

  • Yu H, Jiang X, Lin X, Zhang Z, Wu D, Zhou L, et al. Proteomic alterations of hippocampal suborganelles in copper-treated mice. Toxicological Science: Off J Soc Toxicol. 2018;164:250-63.

    Chinese Academy of Sciences Google Scholar

  • Yu J, Luo X, Xu H, Ma Q, Yuan J, Li X, et al. Identification of key molecules involved in chronic copper exposure exacerbating memory impairment in Alzheimer’s disease transgenic mice using proteomic analysis. J Alzheimer’s Disease: JAD. 2015;44:455–69.

    CAS PubMed Google Scholar

  • Lin X, Wei G, Huang Z, Qu Z, Huang X, Xu H, et al. Mitochondrial proteomic alterations induced by chronic low-dose copper exposure in mouse cortex. Toxicology Wright. 2016;263:16-25.

    CAS PubMed Google Scholar

  • Leave a Comment